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O-GalNAc type glycosylation is an abundant and complex

protein modification. Recent developments in mass

spectrometry resulted in significant success in quantitative

analysis of O-GalNAc glycosylation. The analysis of released O-

GalNAc type glycans expanded our horizons of understanding

the glycome of various biological models. The site-specific

analysis of glycosylation micro-heterogeneity of purified

proteins opened perspectives for the improved design of

glycoprotein therapeutics. Advanced gene editing and

chemical technologies applied to O-glycoproteomics enabled

to identify O-GalNAc glycosylation at unprecedented depth.

Progress in the analysis of intact glycoproteins under native

and reduced conditions enabled the monitoring of

glycosylation proteoform variants. Despite of the astonishing

results in quantitative O-GalNAc glycoproteomics, site-specific

mapping of the full O-GalNAc structural repertoire in complex

samples is yet a long way off. Here, we summarize the most

common quantitative strategies in O-GalNAc glycoproteomics,

review recent progress and discuss benefits and limitations of

the various approaches in the field.
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Introduction
In all living cells, the majority of proteins and lipids passing

through the secretory pathway undergo the post-translational

modification called glycosylation [1��]. Glycosylation plays a

functional role in a range of biological processes, such as

receptor activation, cell–cell interaction, cell adhesion, endo-

cytosis, molecular trafficking, and protein clearance [2].

Alterations in cellular glycosylation are associated with
www.sciencedirect.com 
disease states, including various types of cancer [3–6].

The glycosylation pathway involves the attachment of a

monosaccharide or oligosaccharide moiety to a protein or

lipid. This process is orchestrated by a wide variety of specific

enzymes. Recently, 169 glycosyltransferases genes regulat-

ing the human glycome were summarized based on the

glycosylation type they regulate [7�]. Sixty enzymes are

related to the initiation step of distinct glycan types, includ-

ing protein N-linked and O-linked glycosylation, lipid gly-

cosylation and glycosylaminoglycans. Additionally, immedi-

ate core extension and branching are governed by

57 enzymes and another 52 enzymes are reported to perform

pathway-nonspecific elongation, branching and end capping.

The large family of glycosylation enzymes contribute to the

complexity and heterogeneity of the glycome repertoire and

drive the great diversity and multi-functionality of the

proteome [8]. In short, we now possess intimate knowledge

of genes that serve either distinct or multiple glycosylation

pathways. These genetic insights coupled with advanced

analytical approaches to measure glycoconjugates offer an

unprecedented insight into the functional aspects of

glycosylation.

Mucin-type O-glycosylation (also known as O-GalNAc

glycosylation) is essential in many biological processes

and one of the most diverse and differentially regulated

forms of protein modifications. Whereas most glycan

types are initiated by a limited number of enzymes, the

initiation of O-GalNAc type glycosylation is regulated

by 20 isoenzymes (GalNAc transferases; GalNAcTs)

with varying protein backbone or domain specificities.

The 20 GalNAcTs control the attachment of the core

GalNAc residue to the hydroxyl group of a serine or

threonine (and to a lesser extent, tyrosine) side chain

[1��].The expression levels of those 20 isoenzymes in a

cell determine the localization and site occupancy of

O-GalNAc glycosylation on the proteins going through

the secretory pathway. The large number of GalNAcTs

suggest that these enzymes have the ability to modulate

the O-glycoproteome in a differential way and are likely

to dictate the function of the glycosylated protein

[9,10]. Furthermore, the elongation and branching of

the O-GalNAc cores by another set of glycosyltrans-

ferases adds an additional layer of functional complexity

to O-GalNAc glycosylation [11] (Figure 1a). The overall

combinatorics of glycosylation events on multiple sites,

together with the O-glycan structural diversity, produce

a high number of glycoproteoforms of different abun-

dances. These are important to characterize when

studying biological systems [12].
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Figure 1
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Overview of quantitative strategies in O-GalNAc glycoproteomics.

(a) The most common steps of O-GalNAc glycosylation pathway with the enzymes involved in extension and branching of O-GalNAc structures.

(b) Schematic presentation of quantitative analysis at three different levels (glycans, glycopeptides and glycoproteins). (c) Comparison of analytical

potential of glycomics, bottom up glycoproteomics and intact MS glycoproteomics approaches.
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Strategies for quantitative O-GalNAc
glycosylation analysis
Because of the high diversity and complexity of glycan

moieties the characterization of glycoproteoforms is not

trivial. Glycoproteins can be present in multivariant forms

with different heterogeneity levels and these can be

addressed via various analytical approaches, depending

on the exact biological question asked. For example, the

structural analysis of all glycans in a biological sample (e.g. a

biofluid, tissue or cell type) can be performed after the

liberation of the O-GalNAc glycans from their protein

carriers. This allows to study global glycosylation perturba-

tions in biological systems. However, in such analyses the

connection with corresponding proteins is typically lost and

the profiles obtained are highly affected by specific glyco-

protein abundances (Figure 1b). A more protein-specific

approach, where glycans and proteins are analyzed simul-

taneously, is reached in glycopeptide-centric workflows.

Such glycoproteomic approaches aim to address the micro-

heterogeneity and macro-heterogeneity of the glycosyla-

tion landscape, representing the site variability and

occupancy, respectively (Figure 1b). While glycoproteo-

mics via glycopeptides already results in highly informa-

tion-rich data, no connection can be made between the

occupancy levels and micro-heterogeneity of the different

glycosylation sites on the same protein molecule. This

information level was recently termed as meta-heterogene-

ity [13] and can be assessed studying intact glycoproteins.

Such intact mass analysis require highly advanced technol-

ogies and have currently a limited capability to perform in-

depth structural analysis of glycans and/or to perform the

analysis in a site-specific way. Depending on the specific

study requirements, such as deep structural glycan identi-

fication, site-specific glycomics, proteoform characteriza-

tion, speed of analysis or technical feasibility, all these

approaches have both advantages and disadvantages

(Figure 1c).

Quantitative mapping of released O-GalNAc
glycans
The chemical or enzymatic release of glycans from gly-

coconjugates before their analysis is a broadly used and

powerful approach for the in-depth characterization of

glycan structures present in a biological sample [14�,15].
Prior to mass spectrometry (MS)-based or fluorescence-

based profiling, often a derivatization step is introduced,

to stabilize specific glycan features and/or enhance their

ionization or fluorescence. These include the stabilization

of sialic acids (via esterification, amidation or permethy-

lation) [16], the enhancement of the hydrophobicity of

the analytes (via permethylation or reducing end label-

ing) [17] and/or the introduction of a fluorophore (via
reducing end labeling) [18]. Powerful approaches for the

label-free relative quantification of O-GalNAc glycans are

porous graphitized carbon (PGC)-liquid chromatography

(LC)–MS of reduced glycans [19–21] and matrix-assisted

laser desorption/ionization (MALDI)-MS or LC–MS of
www.sciencedirect.com 
permethylated glycans [22–24]. These approaches pro-

vide a wealth of structural information and have shown

their potential for the profiling of O-GalNAc glycans

derived from isolated proteins, biofluids, cell lines and

tissues [25–27]. With these strategies, total area normali-

zation to the sum of all analytes is used to obtain relative

glycan levels.

Absolute quantification of individual analytes or multi-

plexing of samples by MS can be obtained when isotope

labels are introduced to the glycans. Prominent examples

are isotope labeled amine tags such as 2-aminobenzoic

acid [28] and INLIGHT [29] for duplex analysis or the

aminoxy-based tandem mass tag for six-plex analysis [30].

While these strategies have shown great potential for the

quantification of N-glycans, the developments lack

behind for O-GalNAc glycans. The main reason for this

is that, while N-glycans can be released with the broadly

specific enzyme PNGase F, the release of O-GalNAc

glycans relies heavily on reductive b-elimination, pre-

venting the functionalization of the reducing end [14�].
However, recent developments start to enable the mini-

mally destructive, non-reductive chemical release of gly-

cans. For example, by the direct addition of a reducing

end label during the release [31] or the use of an organic

superbase that prevents glycan peeling [32]. Alterna-

tively, O-GalNAc amplification techniques, introducing

benzene-conjugated GAlNAc precursors to cell cultures,

allow to provide an insight into the O-GalNAc glycosyla-

tion capabilities of a cellular system [33�]. All these

strategies have the potential to accelerate quantitative

O-GalNAc glycan analysis in the near future.

Quantitative O-GalNAc glycoproteomics at
glycopeptide level
Bottom up approaches for glycoproteomics require the

digestion of proteins with proteolytic enzymes (e.g. tryp-

sin or chymotrypsin) and subsequent analysis of the

resulting (glyco)peptide mixture by reversed-phase

LC–MS [34,35,36�,37��]. When moderate complex sam-

ples of isolated glycoproteins are assessed, O-GalNAc

glycopeptide analysis can be performed in a high-

throughput manner, as was shown for the site-specific

O-glycan analysis of, for example, immunoglobulin A, C1

inhibitor and erythropoietin (EPO) [38–40]. In these

examples the full complexity of the glycan microheter-

ogeneity was assessed and an estimation of site occupancy

could be made as no enrichment of glycopeptides was

performed before analysis. However, such detailed, site

specific, glycan characterization is still unachievable for

complex samples, especially in a high throughput

manner.

A large advancement towards proteome wide O-Gal-

NAc localization derived from the introduction of so

called SimpleCells wherein the knockout of exclusive

C1GalT1 Core 1 synthase and the COSMC chaperone
Current Opinion in Structural Biology 2021, 68:135–141
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resulted in the expression of truncated Tn and in some

cases STn O-glycan structures. Based on the enrich-

ment of glycopeptides using lectin weak affinity chro-

matography (LWAC), this technology allowed the map-

ping of thousands of glycopeptides derived from

complex biological mixtures [41]. One of the serious

limitations of this approach is the necessity to enrich for

glycopeptides to overcome the large difference in abun-

dance between glycosylated (low) and non-glycosylated

(high) peptides [42]. Since the enrichment removes

non-modified peptides from the mixture, quantification

of the corresponding site occupancy is hampered [43].

Despite these limitations, this strategy has shown its

advances in the assessment of GalNAcT specificities.

The SimpleCell glycoproteomics approach was com-

bined with genetic manipulation of GalNAcTs to map

the contributions of the individual enzymes to the

glycoproteome [44�]. For instance, a recent report

described how GalNAcT11 regulates kidney function

through glycosylation of the endocytosis receptor

megalin [45]. Another recent advancement towards

differential O-GalNAc glycoproteomics came with the

introduction of the ‘bump-and-hole’ engineered Gal-

NAcTs that accept unnatural UDP-GalNAc analogues

and uniquely tag their substrates [46�,47]. A large

benefit of this approach is that the tagged substrates

undergo full elongation of their Core 1 O-glycans,
giving rise to ST and diST structures. However, this

approach also requires O-glycopeptide enrichment,

resulting in the loss of information of the actual O-
glycosylation stoichiometry.
Figure 2
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To overcome the high dynamic range between peptide

and glycopeptide abundances in a biological samples and

address O-GalNAc site occupancy, a promising solution

was recently reported by Ye. et al. Here, a data indepen-

dent (DIA) mass spectrometry approach for quantitative

O-glycoproteomics was developed, enabling characteriza-

tion of 269 O-glycopeptides carrying up to five different

Core 1 O-glycans in a single shot experiment of unen-

riched human serum [48��]. Further improvements in

DIA data analysis, including the inclusion of more elabo-

rate O-glycan structures, library building, and spectral

prediction, together with advancements in sample prep-

aration such as (glyco)protein fractionation, represent a

promising future avenue towards an unbiased large-scale

quantitative O-glycoproteomics.

Quantitative O-GalNAc glycoproteomics at
the intact protein level
Another emerging approach is quantification of O-Gal-

NAc glycosylation at the intact protein level under native

or reduced conditions. Native mass spectrometry was for

instance used for the in-depth characterization of EPO

glycosylation [49]. Since intact mass measurements pro-

vide information about total glycan composition of a

studied protein and no site-specificity can be obtained

with current technologies, the removal of N-glycans is

required for confident O-GalNAc glycosylation profiling.

In Figure 2 an illustrative example of PNGaseF treated

EPO is provided, showing the unambiguous annotation

and relative quantification of EPO O-glycosylation. Fur-

thermore, unlike bottom up approaches where a lower
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ionization efficiency of glycopeptides as compared to

their non-modified counterparts can lead to underestima-

tion of O-glycosite occupancy, this issue is largely avoided

under intact protein mass measurement as the hydro-

philic properties of the O-glycans represent a minor

fraction of the complete glycoconjugate (Figure 2). Addi-

tionally, a hallmark of mucin type O-glycosylation is that

it usually occurs in dense clusters that are recalcitrant to

peptide mapping methods and in this case native MS can

provide insights about total number of occupied O-gly-
cosites. For instance Wohlschlager et al. have character-

ized Etanercept, a highly glycosylated fusion protein

formed from TNF-a receptor domain fused to the

IgG1 Fc domain [50�]. The resulting dimer contains 4

N-glycosylation sites and 26 O-GalNAc glycosylation

sites. By measuring PNGase F and sialidase treated

Etanercept the authors were able to demonstrate that

the protein exhibits high heterogeneity in O-glycosite
occupancy ranging from 14 to 23 occupied sites carrying

Core 1 glycans. Using this information they were subse-

quently able to characterize and annotate sialylated Eta-

nercept which has shown high heterogeneity in its sialy-

lation profile carrying anywhere between 18–31 sialic acid

residues. Finally, Yen et al. have combined native MS

with clever enzymatic treatments to characterize the O-
glycosylation profiles of the DC-SIGN carbohydrate rec-

ognition domain (CRD) [51�]. In their work they have

demonstrated that by utilizing a combination of enzy-

matic treatments they were able to decipher the micro-

and macroheterogeneity of DC-SIGN CRD as well as to

differentiate between Core 1, Core 2 and Core 3 O-
glycans. Furthermore, this approach enabled them to

observe that the number of O-glycans attached to the

glycoprotein, rather than the mass or elaboration of said

glycans, correlates with the stability of DC-SIGN.

Conclusion
Over the past ten years, the analysis of O-GalNAc type

protein glycosylation has seen many and large develop-

ments at all levels of analysis, assessing the micro-het-

erogeneity, macro-heterogeneity and even meta-hetero-

geneity of protein glycosylation. Still, the developments

are lacking behind the developments made for N-glyco-
sylation analysis in the same time span. For example,

although a significant progress has been achieved for

quantitative analysis of the released O-GalNAc glycans,

the analytic methodologies are still awaiting for a robust,

efficient and nondestructive method for O-GalNAc gly-

can release that allows functionalization of the reducing

end of the glycan. Site-specific quantitative O-GalNAc

glycoproteomics has already enabled many spectacular

discoveries in the field addressing glycosylation micro-

heterogeneity on various therapeutic glycoproteins

and isolated plasma glycoproteins. However, these

approaches are still limited for more complex samples

by the high dynamic range between glycosylated and

non-glycosylated peptides. Furthermore, unprecedented
www.sciencedirect.com 
depth of O-glycosylation occupancy at the marcoheter-

ogeneity level has been reached with the recent devel-

opments in intact MS analysis when studying isolated

proteins. Despite of this success in quantitative analysis

of O-glycoproteins, identification of full O-glycosylation
repertoire at single glycosylation site, simultaneously

with proteoform resolution is still an unattainable goal.

To fully understand the functional role of O-glycosylation
machinery we require further improvements in sample

preparation and more advanced hardware apparatus for

the analysis as well as more sophisticated software solu-

tions for data processing.
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